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It is shown that the shear-induced distortion of the static structure factor (or 
equivalently, the pair distribution function) of colloidal fluids is a non-analytic 
function of the shear rate. The Smoluchowski equation shows boundary-layer 
behaviour at zero wave vector (large separations). The width of this boundary layer 
is proportional to the square-root of the shear rate. An explicit perturbation analysis 
of the two-particle Smoluchowski equation without hydrodynamic interactions is 
given. The onset of the non-Newtonian behaviour of the effective vicosity is due to 
the boundary-layer behaviour of the structure factor. 

1. Introduction 
In recent years the question of how the pair-distribution function for colloidal 

fluids changes as a shear flow is applied has been the subject of an increase of interest. 
The shear-rate dependence of the pair-distribution function is interesting in itself ;t9 

a non-equilibrium quantity and is an ingredient for the calculation of the effective 
viscosity of colloidal fluids. 

It has not been recognized before that the Smoluchowski equation with shear flow 
is singularly perturbed for small shear rates. The problem addressed in this paper is 
thus the singular perturbation analysis of the Smoluchowski equation with shear 
flow for small shear rates, where the two-particle equation without hydrodynamic 
interactions is treated explicitly. 

The Smoluchowski equation, being the basic equation for the statistical mechanical 
description of colloidal fluids, is not an equation that is encountered amongst the 
many singularly perturbed fluid mechanical equations. The Smoluchowski equation 
exhibits boundary-layer behaviour at large values of its argument r. Some singular 
perturbed equations from fluid mechanics have a boundary layer at small values of 
their argument (the position vector r) such as the steady Navier-Stokes equation for 
large Reynolds numbers. Others have a boundary layer of large values of their 
argument, like the Smoluchowski equation, as for example the Navier-Stokes 
equation for small Reynolds numbers (van Dyke 1964). The difference between the 
Smoluchowski equation and the latter is not only the structure of the differential 
equation itself, but more so its boundary condition. For the solution of the 
Smoluchowski equation there is no prefixed boundary value as for the solution of, for 
example, the NavierStokes equation. Instead we know that for vanishing shear 
rates the solution of the Smoluchowski equation is equal to the known equilibrium 
pair-distribution function. In r-space the singularity of the Smoluchowski equation 
can be recognized in a manner similar to that of Oseen in connection with the Stokes 
paradox (van Dyke 1964). This point is discussed further in $2. The ‘boundary 
condition ’ pertaining to the Smoluchowski equation has the consequence that the 
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singular inner solution reduces to the outer solution outside the boundary layer, so 
that the inner solution is actually valid throughout r-space. This is quite different to 
solutions of singularly perturbed equations from fluid mechanics where inner and 
outer solutions must be asympotically matched. This is discussed in $5 4 and 5 .  In 
this paper we shall be concerned with the solution of the Fourier-transformed 
Smoluchowski equation rather than the Smoluchowski equation in r-space. The 
Fourier-transformed solution of the equation in r-space is the static structure factor, 
which is measured by light scattering. The singular behaviour in r-space at  large 
values of r results in singular behaviour of the structure factor a t  small values of its 
argument k. In  k-space the Fourier-transformed Smoluchowski equation attains the 
‘standard form ’ of a singular perturbed differential equation, where the highest- 
order derivative is multiplied with the small parameter. 

For effective viscosity calculations of colloidal systems, an often made Ansatz is 
that the pair-distribution function in shear flow at low shear rates y, can be written 
as (Russel 1976; Russel & Gast 1986; Felderhof 1983; Batchelor 1977) 

(1.1) 
Here, g,(R) is the equilibrium pair-distribution function. The first-order distortion 
g(’)(R) is then calculated by substitution of (1 .1)  into the two-particle Smoluchowski 
equation. Fourier transforming ( 1 . 1 )  yields 

(1.2) 
where X(k, y )  is the (static) structure factor in shear flow, and SJk) is the equilibrium 
structure factor. We show that the structure factor is not an analytic function in y 
for small y ,  in contrast to  what is assumed in (1 .1)  and (1.2). Actually, S(k; y )  shows 
boundary-layer behaviour a t  k = 0 .  The width of this boundary layer varies as yi. 
Thus, for extremely small y the width of the boundary layer is very small, and the 
Ansatz (1.2) yields good results if it  is used to  calculate averages (such as the effective 
stress tensor). As the width of the boundary layer increases with increasing y ,  
averages calculated from (1.2) differ from their correct values. The contribution of 
the shear-flow-induced distortion of the pair-distribution function to the effective 
vicosity is not simply linear in y as would follow from (1.2). Since the width of the 
boundary layer increases as yf, as a first guess the above-mentioned contribution to 
the effective viscosity would be linear in yi. The onset of non-Newtonian behaviour 
of the viscosity is thus related to  the change of the boundary-layer structure with 
increasing y .  

In  the following section of this paper, we review the Smoluchowski equation with 
shear flow. The third section deals with the asymptotic expansion of S(k; y )  for small 
y inside the boundary layer, the inner solution, and $4 deals with the expansion 
outside the boundary layer, the outer solution. In  $5 it is shown that the inner 
solution outside the boundary layer simply reduces to the outer-solution (to first 
iteration), so that  the inner solution is actually valid throughout k-space. A well- 
known result from linear-response theory (where (1.2) is assumed from the outset) is 
recovered. Some numerical results are also presented in this section. We conclude 
with a summary and discussion. 

g(R, y )  = ge(R) + yg‘l’(R) + y2g‘2’(R) + . . . 

S( k, y )  = S,( k) + yS(l’(k) + y2S2’(k) + , . . , 

2. The two-particle Smoluchowski equation with shear flow 
In  this paper we restrict our attention to  the two-particle Smoluchowski equation 

with the neglect of hydrodynamic interactions. As will become clear, the solution of 
this ‘simple ’ equation shows interesting properties. Qualitatively the same properties 
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must be expected for solutions of more complete Smoluchowski equations in which, 
for example, hydrodynamic interactions are taken into account, since the interaction 
part of the diffusion tensors tend to zero as R + 00. The steady-state two-particle 
Smoluchowski equation without hydrodynamic interaction is 

V. [ r R P - 2 0 ,  {E;P+vP}] - = 0. 

I? is the velocity-gradient tensor which depends linearly on the shear rate y ,  R is the 
relative distance between two Brownian particles, V is their interaction potential and 
Do is the Stokes-Einstein diffusion coefficient. P is the probability density function 
for R, which depends parametrically on the rate-of-strain tensor r, or, equivalently, 
on the shear rate y. If P is normalized as 

Lim P = 1,  (2.2) 
R+CC 

it is usually named the ‘radial- or pair-distribution function ’ denoted as g. 
If r = 0 i t  is easily seen that the canonical probability density function, 

P exp{ -&}, 
is a solution of (2.1), since the quantity within the curly braces vanishes for this P .  
In contrast, if += 0, it is not possible to find appropriate solutions for which the 
quantity within the square brackets in (2.1) vanishes, since as R+ co one has 
VV-+O, VP+O,  P - t  1. Thus, what remains between the square brackets for large R 
is T R .  The divergence of this field is zero owing to the assumption that the fluid in 
which the Brownian particles are suspended is an incompressible fluid. This 
incompressibility assumption is entailed in the creeping-flow equations, which are 
needed to  derive the Smoluchowski equation (2.1). Thus, the solution we seek is a 
function for which the quantity within the square brackets in (2.1) is non-zero. 

For arbitarily small shear-rates y ,  that is, for ‘small’ r, the first term in the square 
brackets in (2.1), as was mentioned above, is not small compared to the second term 
(the quantity within the curly brackets) for large enough R.  This is in conflict with 
the Ansatz (l.l),  since for small y this Ansatz predicts that the solution of (2.1) is 
approximately equal to the solution for y = 0, that is, r = 0. The Ansatz (1.1) is only 
valid for those R for which the second term is dominant over the first term. An 
analogous observation led Oseen to the solution of the Stokes paradox (van Dyke 
1964). This singular behaviour for large R shows up in the small-k region for the 
Fourier transfqrm of P ,  which is essentially the static structure factor. In singular 
perturbation theory this is called ‘boundary-layer behaviour a t  wave vector k = 0’. 
The phrase ‘boundary layer ’ is a mathematical nomenclature from singular 
perturbation theory. In this case it does not have an interpretation as a physical 
boundary layer in real space, that is, in r-space. 

3. Asymptotic expansion of the static structure factor for small shear rates 

static structure factor as follows : 
The Fourier transform of the probability density function P(R) is related to the 
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where n is the particle number density of Brownian particles, S(k, y )  is the static 
structure factor, where y is the shear rate, which for simple shear is defined as 

r = y ( &  E &) 
Fourier transformation of (2.1) using (3.1) and (3.2) gives 

wo k -  dk'k'v(k')[S(k-k',y)-l] (3.3) 
+ kB ~ ( 2 q 3  s 

with k = ( k l ,  k,, k,) and v is the Fourier transform of V .  
does not exist the following procedure should be used in order to calculate 

averages from S(k, y) .  First find a sequence V,, so that V, + V as m + 03, and so that 
pm exists for all integers rn. Solve (3.3) with p replaced by v,. The solution of course 
depends on m, S,(k, y) .  For the calculation of averages the limit m+ 03 can be taken 
in a distributional sense, that is, calculate Jirst the average using S,, then take the 
limit m + m ,  

If 

lim dk(S,(k, y )  - 1) (. . .). 

For example, for a hard-sphere potential one could use 
I m+cv 

Vm = m ;  R < 2a, 

= 0 ;  R > 2a. 

For y = 0 (3.3) is easily seen to be satisfied by 

X,(k)  = l+n dR exp -- - 1  exp{ik.R}, s [ { 2?3 1 (3.4) 

as it should be. Subtracting (3.3) with y = 0 from the full (3.3) gives 

In order to expand S(k;y) for small y ,  (3.5) is rewritten in dimensionless form. Let 

K = ( K l ,  K,,  K,)  = ka, (3.6) 

a2 
Do 

y* = L. 

Equation (3.5) reads in terms of these dimensionless variables 

a 
8K2 

y*Kl - [S(K, y* )  - 11 = 2K2{S(K, y*)  -S,(K)) 

(3.7) 
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This equation is singularly perturbed for small y*,  since y* appears as a factor in 
front of the derivative. This is the common situation in singular perturbation 
theory.? Equation (2.1) is singularly perturbed for small r, since however small r is, 
the term TRP in (2.1) can be made arbitrarily large by taking R large (note that (2.1) 
is only valid for systems of infinite extent, since the potential and hydrodynamic 
influences of the boundaries of the system are neglected for all values of R ) .  Thus for 
large separations R, the pair-distribution function significantly differs from the 
function that is obtained from the Ansatz (1.1). These differences may contribute 
significantly to averages as calculated from the pair-distribution function. The 
behaviour of the pair-distribution function at large R shows up in the small-k 
behaviour of the structure factor. We have here a singular perturbation problem, 
with boundary-layer behaviour at k = 0. Therefore we introduce the boundary-layer 
variable (Eckhaus 1979) 

q = K(y*)-”; V E  w+, y* > 0. (3.9) 

Here u is to be taken such that, after transforming (3.8) to an equation in q,  setting 
y* = 0 does not lead to divergences and yields an equation ‘as rich in structure as 
possible ’. These conditions are satisfied if 

v = 1  2’ (3.10) 

The asymptotic expansion of S(q ; y*)  inside the boundary layer thus reads (Eckhaus 
1979) 

(3.11) 

We used the same symbol for the k-, K- and q-dependent structure factors. The 
equation for So is 

(3.12) 

Henceforth we shall assume that y* is small enough to neglect second- and higher- 
order terms in (3.11), and we concentrate on the properties of So. The solution of 
(3.12) in terms of the original K-variable is 

a 
aq2 

91 - “ q ,  Y*) - 11 = 2q2{So(q, Y*) --fie(!7)}. 

(3.13) 

Here +( - )  in the integration limit is to be used if K ,  is positive (negative). The 
above expression was also obtained by Ronis (1984) in a completely different way 
(his equation (16) with t = 0 and D(K)  = Do, not D(K) = Do/S,(K) as is assumed by 
Ronis). Ronis states the validity of (3.13) for arbitrary shear rates. From the above 
analysis it is clear that this equation is valid only for small shear rates, since it 
represents the first term in an asymptotic expansion of the structure factor for low 
shear rates. 

To investigate the behaviour of the structure factor a t  y* = 0+, the following 

t A similar (but not equivalent) singular perturbation problem is found in the calculation of the 
orientationel probability density function for a single rod-like Brownian particle in simple shear 
(Leal & Hinch 1971 ; Hinch & Leal 1972). 
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lemma are needed: i f f (&) is a differentiable function with f ' (&) > 0 on (Qo, GO), 

and limf(&) = co, then, 
0-m 

(3.14) 

where H is the Heaviside step function. If K, > 0 with E = y*, f(&) = 
2Q(K:+5Q2+K3/K,  and Qo = K, ,  then i t  follows from the lemma and from (3.11) 

and (3.13) that limS(K, y*) = S,(K), (3.15) 

as it should be. Actually, (3.15) serves as the 'boundary value' to  (3.12); there is no 
prescribed boundary value for the solution a t  k = 0.  As is shown in the next section, 
the inner solution (3.13) reduces outside the boundary layer to the outer solution, so 
that (3.13) is valid throughout k-space (to first iteration). 

Y * / O  

Using (3.14) with c: = K ,  we find from (3.13), 

lim So(K, y*) = S,((G + K$) 
K,/O 

(3.16) 

independent of y* > 0. A similar relation can be obtained for K, = 0-. Equation 
(3.16) predicts that  there is no distortion of the structure factor in the (K2, K,)-plane. 
Of course the higher-order terms in (3.11) may give rise to a non-zero distortion in 
the (K,,K,)-plane. It is therefore to  be expected that for low shear rates the 
distortion in the (K2 ,  K,)-plane is small. 

Since (3.13) is valid for y* + 1,  the exponent in the integral drops to zero over a 
Q-range which is so small that S,( (K: + Q2 + K$) hardly changes in this range. The 
delta-distribution-like behaviour given in (3.14) is therefore almost valid. Thus we 
expect that  the distortion of the structure factor is quite small. Physically this is of 
course the result of considering both small shear rates and small volume fractions. 
For the numerical evaluation and further investigation of the distortion it is 
therefore convenient to rewrite (3.13) as 

AS(K, y*) = Xo(K, y*)-S,(K) = -exp 2 { 2 y, K: +%: +Ki} 
Y *Kl Y* 

dQ(K;+Q2+K;) [Se( (K:+Q2+K:); ) -Se(K)]exp{  -- 2& K: + 5Q2 + K") . 
Kl Y* 

, 

y* > 0. (3.17) 

In the following section some of the properties of this equation are discussed. In 
particular the boundary-layer behaviour of the distortion A8( K, y*) is considered 
and a comparison with the linear-response theory result is made. 

4. The linear-response result 
Outside the boundary layer, that  is for large enough values of K, or equivalently, 

small enough values of r ,  where the perturbation of the Smoluchowski equation (2.1) 
becomes regular, the structure factor should have a y-dependence as given in (1.2). 
This is the outer solution. Substitution of (1.2) into (3.8) and comparing the lowest 
order in y* coefficients gives the following integral equation for X(l) : 

K. dRK'P(K')W(K-K'). (4.1) s = 2K2S("(K) + k, Z ' ( ~ R ) ~  



The distortion of the structure factor in shear $ow 421 

The solution of this equation is a well-known result from linear-response theory 
(Ronis 1984), 

Notice that the integral in (4.1) vanishes for the solution (4.2) owing to the angular 
dependence of S(l) on K.  Here it is essential that T.‘ depends only on the magnitude 
of K. 

Since there are no adjustable integration constants in S(l), the inner solution 
determined in $3 should reduce to the outer solution (1.2) and (4.2) outside the 
boundary layer. This is shown in the next section, where the boundary-layer 
behaviour is further investigated. 

5. The boundary-layer behaviour of the distortion 
The boundary layer a t  K = 0 is defined as the neighbourhood of K = 0 where the 

Ansatz that the structure factor is analytic in y*, (1.2), does not yield a good 
approximation for the exact structure factor for small shear rates. That is, outside the 
boundary layer for small shear rates, the structure factor equals, to a good 
approximation, the analytic function which, to first order, is calculated in $4. Or, the 
boundary layer is the region in K-space where solutions of (3.8) for small y* obtained 
from singular and regular perturbation theory significantly differ. The fact that the 
boundary-layer variable scales with (y*)i, (3.9), implies that the width of the 
boundary layer is proportional to (y*) i .  This is illustrated explicitly below, where it 
is shown that in a region in K-space where K is ‘large enough’, (3.17) reduces, to a 
good approximation, to the analytic function in y*,  obtained in $4. The equations 
that specify the region where K is ‘large enough’, (5.2)-(5.5), are easily seen to be 
invariant with respect to the transformation K+ (aK)i, y* -+ ay* for any a > 0, or, 
taking a = l/y*, K-+ K/(y*)i, y* -+ 1. This invariance illustrates the (y*)i-scaling of 
the width of the boundary layer. Notice that from (3.16) it follows that the (Kz, K3)- 
plane lies outside the boundary layer. 

Let us first rewrite (3.17) by introducing the new integration variable X = Q - K ,  

If 

and/or (5.3) 

then only X = O* contributes to the integral in (5.1). If all X-values that contribute 
significantly to the integral satisfy 

and 
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then (5.1) may be approximated by 

-%?} ; y* > 0. (5.6) 

Expanding the equilibrium structure factor a t  K 2  + W K ,  around X = O* and keeping 
only leading terms in X yields 

AS( K, y*)  = y * K , ~ 2 ~ ~ J o * m ~ ~ e x p  - 2 +..-; y* > o .  (5.7) 

This gives exactly the well-known result from linear-response theory, 

+...; y* > 0. U ( K ,  y*) = y*---- K, K ,  a s e  (K)  
2 K 3  aK 

As shown in $4, (5.8) is found from linear-response theory, where (1.2) is assumed 
from the outset, so that the outer solution is recovered from the inner solution (3.17). 
Thus (3.17) is valid throughout K-space, up to the first-order iteration. The region in 
K-space where this equation is not a good approximation is, as was pointed out 
before, the boundary layer. It is clear that  the boundary layer has a complicated 
structure; it is the union of the complements of the region defined by (5.2)-(5.5) and 
other regions where (5.8) is a good approximation for (5.1). Equations (5.2)-(5.5) are 
sufficient conditions for the correctness of (5.8), but they are not necessary 
conditions. There may exist additional sufficient conditions for the validity of (5.8). 

Some numerical results are presented in figure 1 .  The results in figure 1 are 
obtained from (5.1) by numerical integration, where the hard-sphere equilibrium 
structure factor is used (see (3.4)), 

sin (K) --K cos (K) 
K3 Se(K) = 1-3$ 9 

where $ is the volume fraction of hard core, 

q5 = 3ca3n. 

(5.9) 

(5.10) 

As expected, if one moves away from K = 0,  the difference between A S  as given by 
(3.17) and (5.8) decreases. For screened Coulomb systems the same behaviour of the 
boundary layer is observed in Ronis (1984). Thus, the boundary layer is essentially 
concentrated at K = 0. 

Notice that the distortion for the hard-core system is of the order lov3, which is too 
small to have any experimental significance, both for a direct measurement and for 
its influence on the eff'ective viscosity. Significant effects arise for larger con- 
centrations and larger shear rates. The theory described here is valid only for small 
shear rates and is accurate only to first order in concentration (second order for the 
effective viscosity). Larger effects are found from (3.17) by taking a larger y* (in 
figure 1 ,  y* = 0.05, which is quite small). The question then is, up to which value for 
y* in equation (3.11), is S well approximated by So? It may well be that the integral 
in (3.8) is small even for larger shear rates owing to symmetry properties of the 
structure factor. In  that case the structure factor is well approximated by So for 
larger shear rates also. For charged systems A S  for y* = 0.05 is much larger than for 
hard-core systems; A S  is < 0.05 (Dhont 1987). Results of future theories on the 
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FIGURE 1. The distortion AS of the static structure factor divided by the volume fraction q5 aa a 
function of K, ,  K2 and K ,  for the two fixed values 0.05 and 0.4 of respectively (KI, Kz) ,  (K1, K,) and 
(Kl ,  K2) .  The dimensionless shear rate y* is 0.05. For 50 nm particles in water this corresponds to 
a shear rate of y z 90 s-l. -, The correct distortion as given by equstion (3.13) or (3.17); ---, 
the linear-response result given by equation (5.8). 

distortion of the structure factor in shear flow which are valid for higher shear rates 
and/or larger volume fractions, should reduce to the results obtained in the present 
paper to 'leading order' in the shear rate and the volume fraction. 

6. Summary and discussion 

analytic in the shear rate y. That is, it  is not correct to assume that for small y 
We have shown that for small shear rates the structure factor in shear flow is non- 

(6.1) 
Outside a neighbourhood of & = 0 ,  the extent of which scales as yf, (6.1) is 
approximately correct. Inside this neighbourhood, the so-called boundary layer, 
(6.1) is very different from the true structure factor for small shear rates. 

The analysis as given in this paper is based on the two-particle Smoluchowski 
equation without hydrodynamic interaction. This is the simplest form of the general 
Smoluchowski equation. More complete Smoluchowski equations, in which for 
example hydrodynamic interactions are included, exhibit the same kind of singular 
behaviour. Solutions of these equations, which are much more difficult to calculate, 
will show the same kind of boundary-layer behaviour. 

We note that the phrase 'boundary layer' is a mathematical nomenclature from 

S(&,y) = S,(k)+yS'l'(k)+y2S'2'(&)+ ... . 
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singular perturbation theory. Here it does not have the physical interpretation as, 
for example, the boundary layer for fluids with a ‘small’ viscosity flowing along a 
large object, although the mathematics is the same in both cases, except that the 
‘boundary-value’, (3.15), is of a different nature. 

Ronis (1984) derives a series expansion of the distortion with respect to y* from 
(3.13) by partial integrations. Equation (5.8) is the first term in this expansion. In  
this way i t  seems as if the structure factor is analytic in y* ,  which is clearly not the 
case. The point is that the series obtained by partial integrations has a zero radius 
of convergence (for y*). A simpler but completely analogous and classic example of 
such partial integrations which formally leads to a series expansion is due to Euler. 
Consider the integral 

Partial integrations give co 
I(r*) = c ( -  l)% n!(r*)”. (6.3) 

n-0 

The radius of convergence of this series is zero, since for any y* =t= 0 the terms in it 
do not tend to zero as n -+ co, thus violating a necessary condition for convergence. 
Equation (6.3), and for exactly the same reason Ronis’ expansion, has no meaning 
as it stands. The significance of the first term in this non-converging series, (5 .8) ,  is 
clarified in $ 5 ;  it is the approximate expression for the distortion for low shear rates 
outside the (non-empty) boundary layer a t  k = 0. The distortion inside the boundary 
layer is properly described by (5.1), not by (5.8). The series (6.3) is an asympotic 
expansion of I(?*) for small y*, that is, for every different y* the sum of a different 
finite number of terms of the series yields a good approximation for I(y*).  Similarly, 
within the boundary layer Ronis’ expansion should be summed up to a finite number 
of terms, depending on the value of K and y*. Only outside the boundary layer is it 
sufficient to approximate the structure factor with the first term in the linear-in-y* 
expansion of Ronis. Thus, even at  low shear rates it is not sufficient to keep only the 
first term in the non-converging series expansion obtained by partial integrations. 

For extremely small shear rates the width of the boundary layer is so small that 
it does not contribute to the effective viscosity significantly. Or, equivalently, for 
extremely small shear rates the non-analytic distortion of the pair-distribution 
function g(R, y) occurs a t  values of R so large that this function is almost equal to 
1, so the averages calculated from an analytic g(R, y )  will yield accurate results. Thus, 
for the calculation of the Newtonian viscosity, the Ansatz that the shear-induced 
distortion is analytic, equations (1.1) and (1.2), may be used. For the non-Newtonian 
behaviour of the viscosity, however, the non-analytic behaviour of the pair- 
distribution function is essential. 

The author is very much indebted to Professor H. N. W. Lekkerkerker for several 
valuable discussions. This work is part of the research program of the Foundation for 
Fundamental Research of Matter (FOM) with financial support from the Netherlands 
organisation for Pure Research (ZWO). 
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